
www.manaraa.com

Tool Support for
Software Development

Progress Report

Michael Thomsen

Department of Computer Science
University of Aarhus
Denmark

May 2000

www.manaraa.com

Tool Support for Software Development

Page ii Michael Thomsen

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page iii

TABLE OF CONTENTS

1. Introduction 1
1.1 Activities during Del A ...1

2. Object-Oriented Modelling 3
2.2 Tool support for creating object models.......................................4
2.3 Object models and relational databases....................................10
2.4 Object models and user interfaces ..15
2.5 Section summary ..19

3. Software Architecture 20
3.2 Architectural patterns for user interface architectures................22
3.3 Tool integration and software architecture.................................26
3.4 Section summary ..29

4. Work in Progress and Future Work 30
4.1 CSCW & groupware..30
4.2 Goals and activities ...30

5. Appendices

www.manaraa.com

Tool Support for Software Development

Page iv Michael Thomsen

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 1

1. INTRODUCTION

This report is delivered as partial fulfilment of the requirements for qualifying to the
second part of the Danish Ph.D. study. The report thus has several purposes: 1) to
present an overview of my work during the first part (“Del A”) of my Ph.D. study, 2)
to present extracts of my results during the first part, and 3) to discuss my directions for
further research in the second part (“Del B”) of the Ph.D. study.

The report is structured as follows: Section 1.1 presents an overview of my activities
during the first part of the study. Section 2 concentrates on my results related to object-
oriented modelling, and section 3 presents results related to software architecture.
Finally, Section 4 presents my ideas and directions for the second part of the study.

1.1 Activities during Del A
The first part of my Ph.D. study started September 1st, 1998 and it is expected to end in
June, 2000. I will, however, in this account of my work in the first part of the study
also include the research-related activities that I took part in before I was admitted into
the Ph.D. study, as these have influenced my work much.

Figure 1 presents a schematic overview. The first research project I was involved in
was the Dragon Project, which ran from February 1997 to June 1998, although the
University group continued to write papers related to the project until May 1999. The
project was a joint project between Maersk Line, a large, globally distributed container
shipping company, and University of Aarhus, Denmark and it received financial
support from the Centre for Object Technology (http://www.cit.dk/COT). The
overall goal of the project was to create a series of prototypes of a world-wide customer
service system that should support handling of interaction with customers, e.g. in
formulating prices for transport of containers (quoting), in booking containers, and in
arranging inland transportation of containers.

From a research point of view the main goals where 1) to investigate the use of object-
oriented development to create a very large software system, 2) to investigate the use of
ethnography and cooperative design in a large project, and 3) to investigate
cooperation between a group of developers all with very different competencies. The
overall lessons are described in (Christensen et. al, 1998b). After the project had
officially ended, the university group also worked on the topic of software architecture.
The lessons from this are presented in (Christensen et al., 1998a, 1999a) and in extract
in section 3.1.1

Figure 1. A schematic overview of my work

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 …

Dragon The Dragon project Dragon Architecture

OO-RDB Tech. Report

Arch.Stud. SASG SESG

Arch.Pat. DPF course Pat. article

OO-UI Ecoop paper

Knight PostWIMP The Knight Project …

1997 1998 1999 2000

www.manaraa.com

Tool Support for Software Development

Page 2 Michael Thomsen

Concurrently with our discussions of software architecture in the Dragon Project
group, I followed the course on Design Patterns and Frameworks. During this course I
worked with Klaus M. Hansen on the topic of architectural patterns for interactive
systems. This resulted in a paper for TOOLS Asia 1999 (Hansen & Thomsen, 1999), as
will be further discussed in section 3.2.

During the Dragon Project, I was also to some extent involved in another case in the
Centre for Object Technology, namely Case 4 (http://www.cit.dk/COT/case4-
eng.html) that focuses on the integration of object technology with non-OO systems.
In this project, I primarily worked on an object-oriented framework for accessing
relational databases. My work in this project was mostly concentrated on
communicating the results of existing research to the project’s industrial partners and
not so much on new research. The most important result of this activity was an official
COT technical report (Thomsen, 1998a) that was published on the COT homepage,
and another report presenting implementation specific details (Thomsen, 1998b). An
extract of this work is presented in section 2.2.

Another spin-off from the Dragon Project was some work that I did in the fall of 1998
and the spring of 1999 on the relation between object-oriented models and user
interfaces. In this study I looked at the concrete problem domain model and user
interface produced in the Dragon Project and tried to describe the relation between
them. The main results of this work are described in an ECOOP 1999 workshop
position paper (Thomsen, 1999). The work is summarised in section 2.4. It should be
noted that both this work, is less finished work that my work on the Dragon project
and the Knight project (see below) and that it thus constitutes work in progress.

The second large project that I have been involved in is the Knight Project
(http://www.daimi.au.dk/~knight). The Knight Project originally started as a
project in the PostWIMP course taught by Wendy Mackay and Michel Beaudouin-
Lafon, but it has been continued as a regular research project with a substantial
amount of work following the course.

The overall topic of the Knight Project is tool support for object-oriented modelling.
Within this frame we have investigated several issues: 1) the current support for and
practice of object-oriented modelling, 2) the use of gestural input on electronic
whiteboards to achieve a ‘transparent’, non-intrusive user interface, 3) integration with
existing CASE (Computer Aided Software Engineering)-tools using component
technology and XMI, and 4) the use of the Unified Modeling Language for initial,
creative object-oriented modelling. The results so far are documented in a number of
papers (Damm et al., 2000a, 2000b, 2000c, In Prep.). Part of the results with respect to
issue 1), 2) and 4) will be presented in section 2.2 and the results with respect to issue
3) will be presented in section 3.3.

A list of the publications I have authored or co-authored before or during Del-A can be
found in Appendix B. Also, Appendix C presents an overview of my study and
teaching activities.

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 3

2. OBJECT-ORIENTED MODELLING

Object-oriented languages originate from the Simula language developed in Norway in
the sixties (Dahl et al., 1966). Simula was designed to be a language for describing
simulations. It is therefore not surprising that one major benefit of object-oriented
languages is an underlying conceptual framework providing means for modelling. This
conceptual framework provides object-oriented languages with the ability to model the
concepts and phenomena in the “real world” that the envisioned computer system is
concerned with. It is important though to remember that the world is not object-
oriented; object-orientation is rather a perspective on the world, which of course only
captures some of the aspects of the world.

Object-oriented development, then, is based on an understanding of the settings that
the system will eventually support. This setting we will refer to as the referent system
or the problem domain and the process of translating referent system specific concepts
to concepts within the computer system we refer to as modelling (see Figure 2 below).
The result of the modelling process we refer to as the model system, or in the case of
object-oriented modelling as the object model or the OO model. Using the model to refer
back to the referent system context we denote interpretation. (Madsen et al., 1993, pp.
289; Knudsen et al., 1994, pp. 52).

Referent system/
Problem Domain

Model system
Object Model

Modelling

Interpretation

Figure 2. Modelling and interpretation

Besides the direct benefits from modelling, object-orientation also provides a unifying
perspective on the whole development process. The conceptual framework provides
means for organising knowledge during the analysis phase, object-oriented design
notations provide means for design, and object-oriented languages facilitate
implementation (Madsen, 1996).

2.1.1 Different model perspectives

When creating or interpreting models it is important to remember that these models
often are made from different perspectives. Different perspectives on a problem domain
yields different models, often intended for different purposes. If one interprets a model
from a different perspective than the one it was created from misunderstandings are
inevitable.

Fowler (1997) mentions three perspectives (following Cook & Daniels (1994)):
Conceptual, Specification, and Implementation. In the conceptual perspective only the
concepts found in the problem domain are described and they are described without
regard to the actual programming language used. During specification the concepts are
further specified. This leads to the interfaces or types of the concepts. Finally, in the
implementation perspective implementation details are added. The Unified Software
Development Process (Jacobson et al., 1999) seems to have a similar division where

www.manaraa.com

Tool Support for Software Development

Page 4 Michael Thomsen

the first model found is the Domain model. This model later influences and is extended
by the Analysis, Design, and Implementation models.

In summary, there is not only one object model for a given referent system, and during
a project the object model often evolves as development progresses. This is important
to notice, as the object model found in later phases most likely will have less direct
relation to the problem domain. This can e.g. be the result of non-functional
requirements such as time- or space-requirements.

2.1.2 Creating object models

The actual work involved in formulating the object model is far from easy an easy task,
as it requires a thorough knowledge of the problem domain. This is especially so in the
context of iterative and experimental development. Take as an example the Dragon
Project. In this project we experimented with an interdisciplinary approach where a
number of different competencies such as an ethnographer and a cooperative designer
worked with the object-oriented developers (Christensen et al., 1998b). Although
different, they share a common frame of reference – the prototype and the practice it is
intended to support. Generally speaking we can say that:

♦ Ethnography provides a concrete understanding of work’s real time
accomplishment in contrast to idealisations and formal glosses.

♦ Cooperative design provides an understanding of the relationship between
current and future practice through the experimental formulation of concrete
design visions and solutions

♦ OO provides a concrete relationship between design visions and the application
in and through formulating a model utilising concepts derived from practice.

The instances of work and the prototype provide and maintain important common
reference points between the three perspectives throughout development. Also, a
number of various resources and artefacts were used in producing the model in the
Dragon Project. These included sessions with business representatives, descriptions of
the database of the current system, Yourdon diagrams of current and future business
processes and, of the utmost importance, our own collaborative studies of current
practice (Christensen et al., 1998b).

2.2 Tool support for creating object models
Tools for creating the object models are in many cases useful. A variety of CASE tools
have been created to support e.g. code generation, documentation, and flexibility in
editing and changing the diagrams (Lyvtinen & Tahvanainen, 1992). However, in
practice these tools are supplemented with whiteboards, especially in creative phases of
development as whiteboards are easy to use, highly flexible, do not hamper the
creativity of the user, and can be used for a variety of tasks. These conflicting advan-
tages and disadvantages of whiteboards and CASE tools can lead to frustrating and
time-consuming switches between the two technologies. Our goal in the Knight project
is to design a tool that offers the best of both worlds.

2.2.1 Current modelling practice

To understand the current practice of modelling further we have conducted three user
studies: An informal study of the modelling carried out during the Dragon project, a
two-week study of modelling in another COT project and a detailed one-day study
with video-taping of a software architecture restructuring session at a commercial
software development company. The studies are described in large detail in (Damm et
al., 2000a, 2000c).

The two user studies highlighted the effectiveness of ordinary whiteboards as tools for
cooperative design. They support a direct interaction that is easy to understand, and
they never force the developer to focus on the interaction itself. Whiteboards allow
several developers to work simultaneously and thus facilitate cooperation. They do not

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 5

require a special notation and thus support both formal and informal drawings.
Notational conventions can easily be changed and extended.

Whiteboards, however, miss several desirable features of CASE tools. Without the
computational power of CASE tools, making changes to the drawings is laborious, the
fixed space provided by the board is too limited, and there is no distinction between
formal and informal elements. There is also no support for saving and loading
drawings.

These observations lead to the following design criteria for a tool to support object-
oriented modelling:

♦ Provide a direct and fluid interaction. A low threshold of initial use is needed and
the tool should never force the developer to focus on the interaction itself. The
whiteboard style of interaction is ideally suited for this.

♦ Support cooperative work. Several developers must be able to work with the tool
cooperatively. Informal cooperative work with domain experts as well as
software developers must be supported.

♦ Integrate formal, informal, and incomplete elements. Besides support for formal UML
elements, there must be support for incomplete UML elements and informal
freehand elements. Also, the support for formal UML elements must be
extensible, to allow for the introduction of new formal elements.

♦ Integrate with development environment. Integration with traditional CASE and
other tools is needed. Diagrams must be saved and restored, and code must be
generated and reverse engineered.

♦ Support large models. A large workspace is needed. In addition, there must be
support for filtering out information that is not needed at a given time.

2.2.2 Supporting current modelling practice

The user studies and the study of other CASE tools have been used as a basis for
implementing a tool supporting collaborative modelling and implementation. This
tool, the Knight tool, uses a large, touch-sensitive electronic whiteboard (currently a
SMART Board (http://www.smarttech.com; see Figure 3) as input and output
device. This naturally enables collaboration via turn-taking among developers and
users. How the interaction with the tool and functionality of the tool enables modelling
and interpretation is discussed in the next sections.

Figure 3. Collaboration around a SMART Board Figure 4. Knight user interface

www.manaraa.com

Tool Support for Software Development

Page 6 Michael Thomsen

The Knight tool
The Knight tool supports the Unified Modelling Language (UML; Rumbaugh et al.,
1999) notation. A major design goal of the Knight tool was to make the interaction
with the tool similar to that on an ordinary whiteboard. Therefore, the user interface
(Figure 4) is very simple: it is a plain white surface, where users draw UML diagrams
using non-marking pens.

The interface is based on gesture input. For example, in order to create a new class, the
user simply sketches a rectangle, which the tool then interprets as a class (Figure 5).
The gesture recognition is done using Rubine's algorithm (Rubine, 1991).

Figure 5. Recognition of the gesture for a class

Also using gestures, a user may associate two classes by drawing a straight line
between them. In general, the gestures for creating UML elements have been chosen to
resemble what developers draw on ordinary whiteboards. Furthermore when using
gestures the input is done directly on the workspace, and there is no distance in time or
space unlike when using e.g. toolbars or dialog-boxes. This directness makes the
gestures easier to learn and use.

To support step-wise refinement, we use compound gestures (Landay & Myers, 1995),
that combine individual gestures that are either close in time or space. This is among
other things used to create UML inheritance relationships. Analogous to the
interaction on an ordinary whiteboards, where users normally draw a line and then an
overlaying triangle, users of the Knight tool also first draw a line gesture resulting in a
generic UML relationship, and then a triangle gesture at the appropriate line end to
further specify that the relationship is of the type inheritance.

Eager recognition (Rubine, 1991), continuous attempts to classify the current gesture
being drawn, is used for the move operation. To move an element, the user draws a
squiggle gesture on the item to be moved. When the squiggle gesture is classified with a
high confidence, feedback is given in order to show that the gesture was recognised – in
this case the item follows the pointer. In this way one single gesture specifies both the
command and its parameters resulting in a fast interaction.

Informality vs. formality. A continuum from informality to formality is supported in
two ways. First, users may draw incomplete diagram elements, such as a relationship
element belonging only to one class (Figure 6).

Figure 6. A relationship with only one class specified

Second, a separate freehand mode is provided. In freehand mode, the penstrokes are not
interpreted. Instead, they are simply transferred directly to the drawing surface. This
allows users to make arbitrary sketches and annotations as on an ordinary whiteboard
(see Figure 4 upper-left). Unlike on whiteboards, these can easily be moved around,
hidden, or deleted. Each freehand session creates a connected drawing element that
can be manipulated as a single whole.

Navigation. The tool provides a potentially infinite workspace. This allows users to
draw very large models, but is potentially problematic in terms of navigating.
Generally there is a need for an easy way of navigating from one point in the diagram
to another point in the diagram, and it is desirable to be able to focus on a smaller part
of the diagram while preserving the awareness of the whole context. To achieve this in

Before recognition After recognition

Before recognition After recognition

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 7

the Knight tool, any number of floating radar windows may be opened (Figure 7).
These radar windows, which may be placed anywhere, show the whole drawing
workspace, with a small rectangle indicating the part currently visible. Clicking and
dragging the rectangle pans while dragging the handles of the rectangle zooms.

Ordinary pull-down menus are not appropriate for activating the functionality of the
tool given the large size of the whiteboard screen. Instead, we use gestures as explained
above and pop-up menus that can be opened anywhere on the workspace. The pop-up
menus are implemented as marking menus (Kurtenbach, 1993) that are opened when
the pen is pressed down for a short while (see Figure 8). For faster operation, the
commands can also be invoked by drawing a short line in the direction of the pie slice
holding the desired command. Furthermore, the menus are context-dependent. The left
side of Figure 8 shows the default menu, whereas the right side shows a more
specialised menu that is opened when close to the end of a relationship.

2.2.3 The Knight tool and the UML

Our user studies above described how users often used informal, freehand drawing
elements, and incomplete elements. Implementing support for these elements in a tool
based on the UML is somewhat problematic as the UML metamodel does not contain
any freehand elements, and as incomplete elements are not allowed by the constraints
in the metamodel. Also we had some problems related to the fact that the UML
metamodel does not describe any of the presentational aspects of the UML diagram
elements.

During the lifetime of a model, it inevitably becomes gradually more stable and
complete. Initially, the developers’ knowledge of a domain is limited, and the focus is
therefore on understanding the overall structures of the domain. Many issues are
unclear at this point, and it is less important to understand the details of the constituent
parts, e.g., attributes and methods and their types and parameters. It is thus necessary
to do more expressive, but less restrictive, modelling.

We believe that, ideally, the UML should support a continuum of metamodels at
different levels of restriction. For each different metamodel, there will be constructs
that relate to models (“meta-model”) and constructs that relate to diagram or
presentation (“meta-presentation”). An unrestricted meta-model will, e.g., allow
attributes with no type information, and an unrestricted meta-presentation will, e.g.,
allow expressive freehand drawings to be used.

Shifting between levels of restriction
The Knight tool supports shifting between the levels of expressiveness and restriction. A user
may use the tool in three ways to transform a model element, so that it conforms to a
certain restriction level.

♦ Automated. The tool may automatically transform the model element.

♦ Guided. The tool may identify the elements that do not conform to the new level
of restriction, and it may provide the user with advice on how each element may
be transformed. The user can then decide which transformation is appropriate.

Figure 7. Radar window Figure 8. Context-dependent pie menus

www.manaraa.com

Tool Support for Software Development

Page 8 Michael Thomsen

♦ Manual. The user has to transform the model element in the usual way, i.e.,
without any special assistance from the tool.

The Knight tool implements all three kinds of support to varying degree. Strokes are
unrestricted elements in a meta-presentation. The default behaviour of Knight is to
automatically transform these into UML elements. In this way a restriction is made in
the presentation as well as in the model. During integration with other CASE tools, an
automated restriction is also necessary. As an example, freehand drawings are
converted into comments, and incomplete elements are omitted from the restricted
model.

The user can also ask Knight to identify the elements that are illegal in the more
restricted meta-model. These will be marked graphically, and the user may then
request guidance on how to transform the elements. For example, an incomplete
association is marked as red, and in order to make it complete, the user can either
delete the association or move the dangling end to a class. When the illegal elements
are all removed, the whole model has been restricted.

Figure 9 shows examples of manual transformations. In the example, a freehand
drawing documenting the concept of a “Route” has been drawn. Depending on the
context, the user may choose different transformations. If the drawing is no longer
significant, the user may choose to transform the drawing into a class and give it the
name “Route”. If it is still important to be able to refer to the drawing, the user may
transform the drawing to a class and a relation to the drawing, thus using the drawing
as an icon for the class. Likewise the user may use the drawing to document a more
elaborate model of a route.

Informal look vs. formal look
The appearance of a diagram influences how people perceive it: A sketchy look of a
diagram makes people subconsciously believe that the diagram is not finished, and
hence they are more willing to suggest changes to it, and a unfinished look can give
developers a cue in remembering which parts they consider unfinished. Knight
supports preservation of an informal look of elements, as elements can be displayed in
three different ways (Figure 10):

♦ it may look exactly the way it was drawn, i.e., it is not transformed,

♦ it may have a semiformal look, which is the same for all elements of the same
category, or

♦ it may have a formal look, i.e., the usual UML notation.

Different parts may also be in different states. In fact, it is often the case that certain
parts of a diagram are detailed and finished, while other parts have not yet been

Figure 9. Restrictive transformations of a freehand drawing

Figure 10. From
very informal look

to formal look

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 9

elaborated on. Displaying the elements corresponding to whether they are finished or
not can show the situation to the users.

2.2.4 Evaluation of the Knight tool

After about half a year into the project, the Knight tool was formally evaluated. This
was done by setting up two sessions, with the purpose of testing the Knight tool in a
realistic work situation. Both sessions were actual design sessions in which Knight was
the primary tool. In the evaluations, a facilitator first introduced the Knight tool to the
participating designers and taught them the basic use of the tool. During the session, he
also helped if the designers had problems and asked for help. The sessions were
videotaped and we took notes with a focus on three aspects of design: cooperation,
action, and use. Following the design sessions, we conducted qualitative interviews.

Evaluation 1: Designing a new system using Knight
Research setting. The CPN2000 project (Janecek et al., 1999; www.daimi.au.dk/
CPnets/CPN2000) is concerned with developing and experimenting with new
interaction techniques for a Petri Net editor with a complex graphical user interface.
The original user interface is a traditional window-icon-menu-pointer interface,
whereas the new interface will use interaction styles such as tool glasses, marking
menus, and gestures. As part of the design, three object-oriented models for the
handling of events and for the implementation of certain interface elements had been
constructed. These three models were integrated into one model using the Knight tool.

Participants. Three designers participated in the meeting. One of these had modelled the
event handling and was knowledgeable of the UML and traditional CASE tools. The
other two modelled the interaction styles and had little knowledge of the UML.

Results. The resulting diagram is shown in Figure 11. This rather large model was
constructed with few problems and mishaps. The criteria for a direct and fluid
interaction was met, as the developers were able to use the tool for long periods
without help after the short introduction. Also the use of gestures was mostly
unproblematic. However, some participants had trouble drawing certain gestures.
These gesture have since been improved. With respect to collaboration, the electronic
whiteboard worked well. The only problem participants reported was that only one
person could draw at a time. Nevertheless, each developer was able to hold his or her
own pen, and they all coordinated their actions when necessary. The freehand
drawings were widely used and appreciated, although the low resolution of the
electronic whiteboard meant that the freehand drawings were relatively coarse-grained.
In addition, response from the electronic whiteboards was delayed when a user drew
quickly. This meant that freehand text was hard to do both legibly and fast.

Evaluation 2: Restructuring a system using Knight
Research setting. The DESARTE project (http://desarte.tuwien.ac.at) is
concerned with designing an electronic support environment for architects. As part of
this environment, a 3D replacement of the workstation desktop is being implemented.
A conceptual model had previously been designed and was to be restructured during
this meeting using the Knight tool.

 Participants. Two designers attended the meeting: The designer responsible for
implementing the 3D desktop and a user involvement expert with an understanding of
architectural work practice. Both had a good knowledge of object-oriented modelling.

Results. The second session showed a few more breakdowns and problems than
evaluation 1. The developers were nevertheless able to complete the session and their
work. When an error did occur, such as the system interpreting a gesture differently
than expected, the participants sometimes got confused about what was happening:
The feedback of the tool was not sufficient in the event of misinterpretations. This has
since been improved. Furthermore, one of the participants initially had many problems

www.manaraa.com

Tool Support for Software Development

Page 10 Michael Thomsen

Figure 11. Diagram produced in the first session

operating the marking menu: Often he invoked commands by accident when drawing.
This was partly due the fact that he had no previous knowledge of gestural input and
marking menus, and partly due to a programming error that has now been corrected.
Collaboration was as in the first evaluation facilitated by the large screen and the
design for the tool. Also, the evaluators often made freehand drawings to illustrate the
user interface of the designed environment. A minor problem in this case, was that that
informal and formal elements could only be rudimentary connected, and there was
little support for advanced grouping.

Evaluation conclusion
As a conclusion on the evaluation, the observations and subsequent interviews showed
that the Knight tool is a valuable tool for modelling in practice. A number of
improvements have been made since the evaluations, and more are planned.
Specifically, we plan to:

♦ Further expand the support for informal and incomplete elements

♦ Fine-tune the gesture recognition

♦ Couple the two different modes to distinct parts of the screen as the concept of
segments in Flatland (Mynatt et al., 1999)

♦ Investigate the use of alternative input devices, e.g.
Mimio (http://www.virtualink.com)

♦ Investigate the notion of filtering of elements in the diagram

2.3 Object models and relational databases
In a running system, objects representing entities in the referent system will be
instantiated from the object model. These instances comprise the data being
manipulated by the user of the running system. Much of that data often needs to be
saved, or persisted, before the running system terminates. There are several ways of
doing this. The simplest is to use a language supplied persistence mechanism, a
persistent store or an object-oriented database, as such storage mechanisms offer
functionality for persisting the objects directly. Often though, the system will be
running in an environment where there already are a number of existing databases, and
often there is a need to persist the data in, or to read existing data from, these
databases.

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 11

Name

University

Name

University-
Department

SSN
Name

Person

GradeAverage

Student

Salary

DepartmentHead

RoomName

LectureRoom

1
1..*

departments

departmentIn

1..*

lectureRooms

1

1..*
1..*

1
placesOfStudy

headIn

This situation is often complicated by the fact that most existing databases are relational
databases. These databases are based on different abstraction mechanisms than the
object-oriented paradigm, which results in an so-called impedance mismatch problem: To
read data from the database the data in the relational model needs to be mapped to the
object-oriented model, and vice versa to save data. Implementing support for this is not
trivial. This motivates the creation of a generic framework that can be used by many
applications. Some ideas for such a framework are presented in this section.

2.3.1 Mapping object-models to relational schema

The first problem to be tackled is the mapping of data between the two models. This
topic is discussed in this subsection, before we discuss the actual framework in the next
subsection. The presentation is based on (Thomsen, 1998a, 1998b).

In discussing the mapping we will use the example of a simple model of a university
(Figure 12). In the following, we will discuss how to map classes, generalization
hierarchies, and association and aggregation relationships.

Figure 12. The university model

The class: The main choice when mapping a class is whether there should be one table
per class or several tables per class. As a general rule Blaha et al. (1991) write that one
should construct one table per class, but this is not always the case. If the mapping to
one table violates third normal form (Codd, 1970), then the table will have to be split
up vertically into two or more tables. If performance aspects are critical and if the
number of records is large, then the table can by split up horizontally into a number of
tables representing groups of tuples. The resulting University table – which conforms to
third normal form – is:

Entity Name Required? Type
UniversityId Yes Integer

Name Yes Text 100
Primary key: UniversityId

Generalisation hierarchies: Just as with classes there are several possibilities when
mapping superclasses and subclasses. Blaha et al. (ibid) present three possibilities, which
all have advantages and disadvantages depending on the actual hierarchy. The
mappings we describe here only take single inheritance into consideration.

Separate tables mapping. This mapping maps each superclass or subclass to a separate
table. This mapping is performed using the standard mapping for classes, with two
modifications: The primary key in the topmost superclass is also used as a primary key
in the tables representing the subclasses, and the table representing the topmost class
gets an additional attribute denoting which subclass is being represented. Using this
mapping on the generalisation in our example model, we get the following tables for
Person and Student respectively:

Entity Name Required? Type
SSN Yes Text 10

Name Yes Text 100
PersonType Yes Text 20

Primary key: SSN

Entity Name Required? Type
SSN Yes Text 10

GradeAverage No Real
Primary key: SSN

www.manaraa.com

Tool Support for Software Development

Page 12 Michael Thomsen

This mapping is useful when there are many subclasses on each level, but it can result
in a too large number of tables if the super/sub-class hierarchy is tall. Furthermore this
mapping can be expensive when the attributes of subclasses have to be fetched, as
several tables have to be consulted/joined.

Leaf-classes only mapping: Where the previous mapping had one table per class, this
mapping results in fewer tables. This is achieved by only creating tables for the
subclasses that are at the very bottom of the hierarchy. These tables receive all the
attributes of the bottom class, but besides this also receive all the attributes from any
class met going up the tree from the bottom class to the topmost superclass. The result
for the Student and DepartmentHead tables becomes:

This mapping is useful when the superclass has few attributes and the subclass has
many attributes, as the impact of putting the superclass attributes in every subclass
table will not be very large. It can introduce inconsistencies though, as uniqueness of
fields cannot be checked across tables. An example of this could be a database having
both a student and a professor with the same SSN, in each of their tables. Furthermore
any class not being the bottom subclass will be mapped to a table that is ‘too large’.
This can result in a waste of space in some databases, and it might reduce the
efficiency.

Single table mapping: Where the philosophy of the second mapping was to bring
attributes from superclasses ”down” into the subclass level, the third mapping does the
opposite. Instead of a number of tables for each subclass, we construct only one table
having all the attributes of any class in the super/sub-class tree. This results in the
following table:

Entity Name Required? Type
SSN Yes Text 10

PersonType Yes Text 20
Name Yes Text 100

GradeAverage No Real
Salary No Integer

Primary key: SSN

This mapping is useful when the hierarchy is not too wide. If the hierarchy furthermore
is high, the lookup of attributes in subclasses low in the hierarchy is much faster than
with the first mapping. The disadvantage is of course that the table can become quite
large. This can result in wasted space, in databases that do not optimise the space used
by “half-empty” records.

Association relationship: When mapping associations between classes, we can choose
between introducing a new table mapping the association, or just introduce foreign key
attributes that refer to the classes that are associated. Which strategy to choose depends
on the multiplicity of the association.

Many-to-many associations: When mapping many-to-many associations, we have to
introduce a new table to conform to the rules of third normal form. Take as an
example the association in the above example model between the classes
UniversityDepartment and Student. If we mapped this association by adding an
attribute in the UniversityDepartment and Student tables, which would refer to the
primary key of the associated table, then our primary key would no longer be valid.
This is easily seen as we could now have several records having only different values in
the new association field, and thereby having the same value in the DeptId attribute,
which is our primary key.

Making the association attribute part of the primary key could of course solve this
problem, but at the same time produces a new problem. We will now violate second
normal form, as some of the non-primary attributes no longer will depend on the full
primary key. We therefore always use a new table when mapping many-to-many
associations. This table simply contains the attributes forming the two primary keys of

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 13

the two associated tables. These are all required attributes, as associations only can
exist between existing objects. For the primary key we use the joint key of both
attributes, as we can have records with the same values in either one of the two
attributes. The result of mapping the association between the Univerisity-
Department and Student tables results in the following association table:

Entity Name Required? Type
DeptId Yes Integer

SSN Yes Text 10
Primary key: (DeptId, SSN)

Many-to-one associations: The mapping of many-to-one associations can of course be
done using the technique for many-to-many tables discussed above, but this is no
longer the only alternative. Since one of the association ends has a one multiplicity, we
can represent the reference to this class by adding an attribute containing its primary
key to the table with the many multiplicity. This respects third normal form, and does
not destroy the primary key as we never add multiple entries in the many table with
only different values in the association field – this is easily seen as each distinct record
in the many table is associated to only one other class. In our example model the
association between University and University Department results in the
following table:

Entity Name Required? Type
DeptId Yes Integer
Name Yes Text 100

UniversityId Yes Integer
Primary key: DeptId

The advantage of this mapping compared to the mapping of many-to-many with an
extra table is that access to the data becomes faster as only two tables need to be
consulted and that the overall number of tables is lower. There are also disadvantages
though. The introduction of the association attribute in one table moves the association
into one of the classes where it conceptually belongs in neither but as a separate entity.
Furthermore practice has shown that it is difficult to get association multiplicities
correct on the first model iterations which speaks in favour of introducing a separate
association table so changes to many-to-many are trivial. We therefore recommend
adding the association table when very fast access is not critical.

One-to-one associations: One-to-one associations can of course be mapped in the same
manner as with many-to-many and one-to-many associations, but besides this they can
be mapped in a third way. Since there will only be one object on both sides of the
association, we can collapse not only the association table into one of the object tables,
but collapse both of the associated classes and the association table into one table. This
mapping used on the association between university department and department head
results in the table shown below.

Entity Name Required? Type
DeptId Yes Integer
Name Yes Text 100

SSN Yes Text 10
Salary No Integer

Primary key: DeptId

One has to careful though, as this transformation will often violate third normal form.
The advantages in this further collapse of tables are the same as before: Faster lookup
and lower overall number of tables, and the disadvantages are also the same: It is
“conceptually wrong” and a change of multiplicity becomes difficult. Furthermore this

www.manaraa.com

Tool Support for Software Development

Page 14 Michael Thomsen

mapping cannot handle cyclic associations of the form where A associates B, B
associates C and C associates A. We therefore again recommend that one-to-one
associations are transformed with the extra associations table as with many-to-many
associations.

Aggregation: In an object model there is typically a distinction between association
and aggregation, but when mapping these two constructs the same methods apply. In
Blaha et al, all that is said about aggregations is that they can be mapped in the same
ways as associations. This is the case as aggregation can be viewed as a special case of
one-to-many association. It should probably be investigated further is this really is the
case in reality, or if it only holds in theory, and special care has to be employed when
mapping these.

2.3.2 A framework for coupling object models and relational
databases

The previous section described the possibilities that exist for mapping between
relational database schema and object models. At an operational level, the framework
offers the following operations:

Update: Takes as input a single object currently in the database. The data in the
database corresponding to the object will be updated according to the
values in the object.

Create: Takes as input a single object currently not in the database The object is
added to the database.

Delete: Takes as input a single object that has previously been fetched from the
database, and deletes the data in the database corresponding to the object.

Fetch: Takes as input a class and returns a list of all those instances of that class
that are currently found in the database. To restrict the number of
returned objects search criteria can be added.

ReFetch: Takes as input a single object that has previously been fetched from the
database. It then compares the values in the object with the values in the
database, and if the values in the database have been changed they will be
fetched and the values in the object changed.

Furthermore, the design of the framework has been based on the criteria:

Orthogonality. The framework operations should be orthogonal to the type of the
objects operated upon, i.e. it should be able to handle all types of objects,
and it should not make any requirement on the objects types, eg. that they
should be a subtypes of rdbObject.

High transparency. The framework should be designed with a high level of
transparency, in the sense that only the most important database
operations on the objects should be explicit, whereas other less important
operations should be made transparent to the programmer.

Ease of use. The framework should offer abstractions as strong as possible, in the
sense that as little code as possible should have to be provided by the user
of the framework.

Flexibility. The framework should only enforce a specific architecture regarding
persistence aspects. The user should be able to choose how to organise
other parts of the architecture, e.g. user interface – object model
communication.

To ensure that the first criterion is meet is has been chosen to create a shadow class for
each persistent class. This shadow class then handles the persistence of that class.
Other choices, such as requiring that a class to persist should inherit from a certain

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 15

persistence class would clearly violate the first criterion, and lead to a framework that
would be less general. Figure 13 (Left) shows the generic interface for the shadow classes.
To create a concrete shadow class for any given class, the user of the framework must
create a subclass of the generic shadow class that implement three abstract methods:
init, obj2rdb, and rdb2obj.

The init method should be specialised to provide the framework with the name of the
table and the names of the columns that instances of the class are to be persisted in.
The two methods obj2rdb and rdb2obj should be specialised to save the state of the
class using a number of provided setInt, setChar, setText, … and getInt,
getChar, getText, … methods. As the user thus has to add very little code to the
framework, the third criterion is also meet.

Once the obj2rdb and rdb2obj methods have been specialised, the uer of the
framework can use the shadow classes to persist his classes as illustrated in Figure 13
(right). The class of the name customerRdbClass is the shadow class for the customer
class, and in the example an instance of the customer class is persisted simply by
handing the instance to the save method on the shadow class.

The second criterion – transparency – is met by the fact that the user only has to
implement the two persistence methods using the setX and getX methods. Other
database specific functionality is taken case of by the framework. Finally the fact that
the framework is based on shadow classes that can handle the persistence of any type
class and the fact that it imposes no restrictions on the architecture of applications
using the framework ensures that the fourth criterion is also met.

2.4 Object models and user interfaces
In object-oriented development of interactive applications one major task, besides the
creation of the object model, is the design and implementation of the user interface.
Traditionally development methods offer much advice on how to construct each of
these major parts, but there seems to be less advice offered with respect to the benefits
of a joint production of the two parts.

Modelling is native to object-oriented development. During development, models are
continually created, modified, and extended. An important such model is the object
model that describes the most important concepts in the problem domain. Clearly, a lot
of knowledge of the problem domain lies behind the production of these models, so it
seems natural to investigate how much of this knowledge can be used in producing the
user interface.

Figure 13. (Left) Simplified interface class – (Right) Simple use

rdbClass:
(#
classType:< object;
init:< (# … #);
obj2rdb:< (# … #);
rdb2obj:< (# … #);
create:
(# theObject: ^ classType

enter theObject[]
do …

#)
save: (# … do … #)
delete: (# … do … #)
refetch: (# … do … #)
fetchAll:
(# currentObject: ^classType

do … inner #)
#)

#)

(#
customer: (# … #);
aCustomer: ^customer;

customerRdbClass: rdbClass
(#

classType:: customer;
…

#);
custRdb: @customerRdbClass;

do
&customer[]->aCustomer[];
…
aCustomer[]->custRdb.save;
…

#)

www.manaraa.com

Tool Support for Software Development

Page 16 Michael Thomsen

As the user interface is what provides the end-user with a means of interacting with the
application it is crucial that it is well designed. An important criterion in achieving this
is understandability – the user interface must be understandable to the user in terms of
the work context she/he works in and it must support the praxis of hers/his use
domain. As the models constructed in object-oriented development are descriptions of
aspects of the problem domain it also seems natural so investigate if knowledge about
the user interface can be used as input in constructing these models.

2.4.1 A systematic look: The Dragon case

We now present and discuss the findings in comparing the user interface and the object
model of the Dragon Project. The Dragon project provides an interesting case for
investigating the relationship between object models and user interfaces for a number
of reasons:

♦ The object model found even in the running system is very close to a “clean”
domain model as the project was a prototyping project where collection of
knowledge of the problem domain and ways of supporting its work processes
was more important than performance issues,

♦ the problem domain of shipping is quite complicated or at least not trivial, and

♦ both the domain model and the user interface were discussed and produced in
cooperation with users from the problem domain.

We first look at simple and complex attributes and widgets, then at grouping of widgets
in the user interface and how this relates to grouping in the object model, and finally,
at some of the mismatches found and their possible explanations and at what matches
could be imagined other than the ones found here.

Simple attributes and simple widgets: Simple attributes such as text, integer, and date
are in many cases represented by a simple textfield widget (see Figure 14 below). This
widget both indicates the current state, and allows the user to change the state. Often
the textfield widget is accompanied by a text label, placed next to the textfield, which
provides the user with a description of which attribute the textfield belongs to. In some
cases – particular when representing dates – the textfield performs a syntax check when
the user inputs a new text. This serves both as a validation of the input, and allows the
user to input dates in various ways which are then formatted uniformly by the system.
In some cases where the user was not allowed to change the contents of the widget one
of two alternatives was found: Either a special type of ‘read-only’ textfield widget or a
plain text-label.

Figure 14. Representing simple attributes

Simple attributes that can only hold one of a number of predefined values are
represented in four different ways. One is an editable textfield (Figure 15a below) and a
second is a option button (Figure 15b). The option button is generally used in the cases
in which there are only a few alternatives, whereas the textfield is used when there are
many possible valid values. To validate whether a correct input has been made, the
field performs a syntax check on the input as in the case of dates above. In a few cases,
a combination of the two input options was used (Figure 15c): An editable text field
with a popup menu from which the legal options can be chosen. Finally in those cases
in which there are only very few alternatives, and where all these need to be visible at
the same time a group of radiobuttons has been chosen (Figure 15d).

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 17

(a) (b)

(c)

(d)

Figure 15 (a, b, c, d). Representing type attributes

Complex attributes and complex widgets: In many cases in the domain model, a class
has an attribute that is a reference to another class. As examples, the class Quote holds
a reference to the class Customer, and a reference to the class Standard Product.
In the user interface of the Dragon system these relationships between classes are
represented by a number of widgets that present a few of the most important attributes
of the related concept, e.g., the Quote tab has one text field holding the customer
name of the related Customer, and two text fields showing receipt and delivery
of the related Standard Product. These widgets do not always show all
information about the related concept as this often would be too space consuming. In
the two example cases, if the user wishes more information than what is shown in the
few widgets, he will have to go to another tab.

Besides holding single references to other classes, domain classes also often hold
collections/lists of references. An example is the Sea Corridor class which holds a
list of references to related Sea links. In almost all cases in the prototype these
many related elements were represented by a list-/table-type widget (see Figure 16
below). Furthermore, the columns in this list view closely corresponded to each of the
attributes in the related class.

Figure 16. Representing many related elements

Grouping of widgets: Another important feature in user interfaces is grouping. If the
user interface is to be understandable it is important that the elements in the user
interface are grouped in a natural way. This section looks at how groupings found in
the user interface correspond to groupings in the object model.

The highest level of grouping in the user interface it the overall division of the user
interface into 13 major tabs. Seven of the 13 major tabs (Customer, Quote,
Booking/Transport, Documentation, Products, Schedule and Vessel) each correspond
to one important class in the domain model. For all seven tabs almost all data in the
tab is found in this one corresponding class. Also each of these tabs/classes
corresponds to the seven probably most important concepts in the problem domain.
The other six tabs (Stuffing, Doc. status, Allocation, Rerouting, Report and Route

www.manaraa.com

Tool Support for Software Development

Page 18 Michael Thomsen

Map) correspond to neither one class nor one concept. They rather correspond to one
specific, important task that operates on a number of classes.

Inside each tab elements are further grouped in subtabs and inside canvases. Figure 17
below illustrates an example from the Booking tab: A separate canvas labelled
Contact holds three widgets labelled Party, Name, and Phone. In the Booking
tab this Contact canvas displays the contact person that has been assigned to the
current booking. Interestingly this Contact canvas corresponds directly to the
the_Contact_Person attribute on the Booking class. This attribute is a reference
to the class contactPerson, which has three attributes that correspond to the three
widgets Party, Name, and Phone in the canvas.

Figure 17. Grouping using a canvas

Mismatches: A small amount of classes (around 10 %) are not shown anywhere in the
user interface at all. These classes hold e.g. configuration properties or they hold
duplicates of data found elsewhere that has been computed to increase performance. In
general, one could question whether such classes should be in the domain model at all.

Also, as demonstrated by the introductory example in the previous section, there are
many cases where one of the attributes in a class is not represented anywhere in the
user interface and many cases where a widget which has no corresponding attribute
where its state is stored. These omissions were often not deliberate but were rather
either due to an error or due to different insights gained by the different people working
on the user interface and object model.

Other matches: This section has presented a number of matches or relations between
widgets in the user interface and classes and attributes in the object model of a concrete
computer application. Without resorting to naive inductivism, we do believe that many
of these are valid in a broader context. It would be interesting to see whether these
observations also hold for other applications and other domains and to investigate
whether some more concrete statements can be formulated on the relationship. It
would also be interesting to see how much more information about the user interface
could be found if the combination of a domain model and a task/use-case model was
used.

In addition, there are of course many other possible and likely matches other than
those exposed by this one case. We especially expect this to be true in applications with
more advanced user interfaces such as drawing tools or programs with graphical
visualization in the forms of e.g. charts or graphs. However, even applications such as
these will most likely have parts that are more traditional where most of the
observations will be valid.

2.4.2 Implications for development and future work

The case study suggests that domain models are useful input in designing the user
interface and that user interfaces can provide input in the development of the domain
model. We doubt however that we should pursue ways of fully specifying (or
generating) user interfaces from domain models. Many important choices in user
interface development are based on other factors than those captured by these models,
e.g. factors such as ergonomics, understandability, performance, social conventions,
user expertise etc. Rather we should consider the production of the domain model, the
task/use-case models, and the user interface to be separate but parallel activities. Each
activity can provide very useful input to each of the other activities and the

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 19

development can in this way achieve synergy – a synergy that we indeed often
experienced in the Dragon project.

There are several ways of achieving this synergy. One way would be to perform simple
manual comparisons of the user interface and the object model at regular intervals in
the development. It would be interesting, however, to investigate if tool support for this
comparison could be usable. The tool could help both in creating the object model
starting from the user interface and the reverse. A complete generation would probably
not be desirable – rather the user could select parts of the user interface or the object
model and then ask the tool to produce the corresponding part. To make the tool really
usable these generations should respect the software architecture within the
application, and would then also potentially help in keeping the code uniform. Also the
tool could assist the developer in respecting user interface guidelines. We are currently
looking at ways of designing such a tool, but have not yet had the time to implement a
prototype.

2.5 Section summary
This section has outlined my results with respect to object-oriented development. After
a brief description of the notion of modelling, and a few comments on the actual
creation of models as an collaborative effort, three areas were dealt with: the Knight
tool that supports the construction of object models, persistence of object models in
relational databases, and the relationship between object models and user interfaces.

www.manaraa.com

Tool Support for Software Development

Page 20 Michael Thomsen

3. SOFTWARE ARCHITECTURE

In the recent years the topic of software architecture has attracted much attention.
When discussing or designing software at the architectural level, the focus is on higher
level abstractions as opposed to lower level abstractions such as code. Also software
architecture considers non-functional aspects such as time and space usage. This higher
abstraction level should enable software designers to handle the large complexity of
complex software applications, and a focus on software architecture can thus be seen
as a means of leveraging software quality.

A commonly agreed upon formal definition of software architecture does not exist1 –
we have chosen to use the often-used definition by Bass et al. (1998):

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them.

In designing software, developers often lack a full understanding of the solution to a
specific problem. This can e.g. be due to a lack of knowledge of a particular solution or
a particular technology, but it can also be due to a lack of understanding of the problem
itself. As the design of software architecture is the highest level of design in software
development, architectural uncertainty causes significant risks. This has caused us to
define the concept of architectural uncertainty (Hansen & Thomsen, 1999):

An architectural uncertainty represents a lack of full understanding of an architectural
structure.

To avoid failure in creating successful software, special attention should be paid to
these architectural uncertainties: They should be identified, and should either be solved
or somehow isolated. This will be discussed in more depth in section 3.2 with a
concrete example of an architectural uncertainty.

Another interesting area is the integration of software architecture with the
development process. In the context of the Dragon Project, we have tried to gain an
understanding of this, which will be discussed in section 3.1.1. Finally, section 3.3 will
discuss a concrete software architecture, namely the software architecture that we
designed in the Knight project to facilitate the integration of the Knight tool with
existing CASE-tools.

In the presentations and discussions of concrete software architectures in the following
sections, we will try to present the architectures using well-defined software
architecture notations, such as the UML or in most cases a variation of the architecture
specific notation introduced in (Bass et al., 1998). In the Bass et al. notation (Figure 18),
solid lines denote control and processing, whereas dashed lines denote data. We
furthermore add the starred symbol to denote an architectural uncertainty, and add a
shadow to a component to indicate one or more components of that kind.

Figure 18. Software architecture notation

1 Although there a commonly agreed upon definition does not exist, a large number of definitions do exist;
the SEI Software Architecture homepage at www.sei.cmu.edu/architecture/definitions.html lists
more than 50!

Computational component
object
Computational component
object. Concerned with data

Passive data component

Process

Uni-directional control flow

Bi-directional control flow

Uni-directional data flow

Bi-directional data flow

Architectural
uncertainty

A shadow indicates a
set of components

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 21

3.1.1 Software architecture and the development process

Iterative development is becoming the norm in most object-oriented development pro-
cesses. However, development using an iterative approaches, lead to many new
problems, as there is no firm foundation to base the initial development on. This results
in a special challenge with respect to software architecture: the software architecture
needs to be designed early in the process so that it can provide a frame for the
development, but often the concrete requirements, and the needed technical insights,
are not available early in the process.

In the Dragon project we tried to meet these challenges by designing an initial software
architecture as early as possible to support the initial prototyping phase. This
architecture then later evolved though a number of architectural refactorings into the final
architecture. Our experiences are presented briefly below –more details and concrete
examples are available in (Christensen et al., 1999a).

Initial prototyping
We believe that an explicit architecture is essential – even in initial prototyping cycles. In
the Dragon project our initial architecture was designed to meet the following criteria:

♦ the architecture had to offer a fairly stable structure, in which the prototype
could evolve during the first phase,

♦ the structure had to be flexible enough to allow for a high degree of
experimentation within rapid development cycles, and

♦ it should support an efficient work organisation, allowing all developers to work
intensively on the prototype in parallel.

The desire for a stable structure, in which the prototype can evolve, can be seen as a
way of reducing the complexity of the system. Also, an agreed upon software
architecture provides an overview of a quickly growing prototype, it constitutes a
consensus about “how to do things”, and it serves as a vehicle for communication and
explanation. This was e.g. experienced when a new developer was introduced to the
prototype late in the experimental prototyping phase: as a result of the well-defined
architecture, he obtained an understanding of the relatively large prototype quite easily.

The architecture must be flexible though: it should allow evolutionary development of
and experimentation with all parts of the prototype to facilitate the experimental work
performed within participatory design sessions. Finally, the criteria for efficient work
organisation, is important in order not to slow down the development.

Architectural evolution
While an explicit architecture is essential, we also believe that it rarely is possible to
design the final architecture of the system during the initial phase of the development.
We will, instead, argue that architectural evolution is necessary. This can be due to
changing requirements over time, due to increasing understanding of the problem
domain, and due to further understanding of the technical ways of realising the system.
In this way, not only the system itself but also the software architecture can be said to
be prototyped.

Such architectural evolution can take place though a number of architectural
refactorings: function-preserving transformations of the architectural structures, akin to
code refactoring that are considered with semantic-preserving transformations of
objects and classes (Opdyke, 1992).

www.manaraa.com

Tool Support for Software Development

Page 22 Michael Thomsen

3.2 Architectural patterns for user interface
architectures

The introduction to this section motivated and introduced the concept of architectural
uncertainty. This subsection will present one example of such an uncertainty and
discuss how this uncertainty was handled. The example is taken from a joint paper
with Klaus Marius Hansen (Hansen & Thomsen, 1999). For more details and for
another example the reader is referred to the paper.

3.2.1 The Dragon case

This example of an architectural uncertainty is also taken from the Dragon Project.
One consequence of the large degree of cooperative design carried out in the project
was that the user interface was constantly extended, re-designed and changed. This
was somewhat in opposition to the other parts of the Dragon System, as e.g. the
Problem Domain Model and Persistent Storage components, which were at least
structurally stable after the initial phase. From a software architecture point of view the
radically changing User Interface component was thus an architectural uncertainty
(illustrated in Figure 19).

3.2.2 Architectural patterns

The concrete software architecture ‘challenge’ in the Dragon Project, where the user
interface is much more unstable than the rest of the application is a common problem
faced in constructing interactive systems. Recognising this, and to allow the designed
architecture to be used in other contexts, our paper presented both the problem and the
solution in the form of an architectural pattern. Architectural patterns, like design
patterns (Gamma et al., 1995), present a common solution to a common problem
within a given context, which matches well with the notion of architectural
uncertainty. Architectural patterns are not new. Well-known architectural patterns
include those presented by Buschmann et al. (1996), and Shaw (1996).

The pattern format we use varies somewhat from the format of Buschmann et al.
(1996) and Shaw (1996). The former can be too verbose to efficiently communicate the
essence of the patterns, and the latter can be too short to give sufficient understanding
to actually apply the patterns. Figure 20 presents the pattern format, which may be
viewed as a condensed version of the format in Gamma et al. (1995) or as a slight
variation on Brown et al.’s (1996) ‘deductive mini-pattern’ template.

Name and thumbnail: What should the pattern be commonly known as?
Followed by a short description.

Problem: What is the architectural problem that the pattern faces, and what are
the main forces behind this problem?

Solution: What is the effective solution of the stated problem? This section
includes a description of the pattern’s high-level static structure in the form of a
Unified Modeling Language class diagram using packages.

Sample implementation: How could this pattern be applied? This section
includes UML class diagrams.

Consequences: What are the benefits and liabilities of applying this pattern?

Figure 20. Pattern format

Using this format, we now present the Application Moderator pattern, which in a
generalised manner describes the problem faced in the Dragon Project, and its general
solution. Following this we return to the concrete application of this general solution in
the Dragon case.

Figure 19. Conceptual view
of the initial architecture in

the Dragon project

User
Interface Business

Functions

Problem
Domain
Objects

Persistent
Storage

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 23

3.2.3 The Application Moderator pattern
The Application Moderator architectural pattern divides an interactive application
into a problem domain related part (the Problem Domain Model), a user interface
component (User Interface), an abstract interface to the user interface (User Interface
Mirror), and an Application Moderator component that couples the User Interface
Mirror with the Problem Domain Model and other functionality.

Problem: How does one design the architecture of an interactive system such that the
user interface functionality is separated from the problem domain related functionality
and such that changes to the user interface require minimal change to the rest of the
system?

The following forces should be balanced:

♦ User interface functionality should be separated from problem domain related
functionality, so that each part is easier to understand and maintain.

♦ Changes to the user interface should have as little impact on the rest of the
application as possible.

Solution: The Application Moderator pattern divides the application into five
components, Problem Domain Model, Application Moderator, User Interface Mirror,
and User Interface. Optionally a Testing component may be implemented. The overall
structure is shown in Figure 21.

Figure 21. Overall structure of the Application Moderator pattern

The Problem Domain Model contains problem domain related data and functionality.
The User Interface Mirror contains an abstract interface to the User Interface
component. It consists of data members that reflect the state of the widgets in the user
interface and event members that represent events that occur in the user interface, such
as a button press. Furthermore, it contains two abstract methods, setState and
getState, which should be refined to write the state of the concrete widgets into the
data members (getState) and conversely (setState). The User Interface contains the
concrete widgets, implements the getState and setState methods as described
above, and calls event members as appropriate.

The Application Moderator connects the Problem Domain Model with the User
Interface by subscribing to the events in the User Interface Mirror and thus moderates
their communication. Upon invocation of the events, it can access the current state of
the user interface by calling getState and then read the data members or it can set the
state of the user interface by setting the data members and then call setState or it can
do a combination of both.

Finally, the architecture allows for effective testing of most of the application. This is
done be creating a Testing component that systematically sets the state of the User
Interface Mirror, calls one or more event methods and then tests if the data members
are in a correct state.

Sample implementation: Consider a small, and perhaps somewhat artificial, Financial
History application for tracking financial expenses, with user interface as shown in
Figure 22 (Left) and problem domain model as shown in Figure 22 (Right). An
application of the Application Moderator pattern towards structuring this application
may proceed as follows; the steps should not necessarily be taken sequentially. Part of
the class structure of a resulting implementation is illustrated in Figure 23.

User Interface
Mirror

Problem
Domain
Model

Application
Moderator

TestingUser Interface

www.manaraa.com

Tool Support for Software Development

Page 24 Michael Thomsen

1. Implement the Problem Domain Model

The Problem Domain Model is as described above.

2. Implement the User Interface

The User Interface component (InputUI) can be implemented using a user interface
toolkit and corresponds to what may be generated by a user interface builder.

3. Implement the User Interface Mirror

The User Interface Mirror reflects the User Interface and acts as an interface to it. The
User Interface Mirror is in this sample implementation divided into two classes:
UIDataMirror and UIEventMirror. The UIDataMirror provides a data interface
(Figure 23, left) that reflects the data displayed in the user interface. The description
and amount attributes correspond to the two text fields in the user interface of the
Financial History application. The expenses attribute is a list of FinanancialExpense
objects (Figure 23, right). Each element of this list corresponds to an element in the list
view of the application. CurrentExpense models the current selection of the list view.
Moreover, the getState and setState operations are defined in the class. The event
members of the User Interface Mirror are implemented as a number of abstract
methods on the UIEventMirror, with one function for each event of interest in the
user interface. The onAdd method, e.g., corresponds to the event that the addButton
was pressed.

4. Refine the User Interface component

The User Interface component, implemented in step 2, is refined to implement the
setState and getState operations and to call the event methods in the User

Figure 22. (Left) Financial History user interface
 (Right) Financial History problem domain model

Figure 23. (Left) Class diagram for the Financial History application
(Right) FinancialExpence data interface

+setState()
+getState()

UIDataMirror

+description
+amount
-currentExpense
+expenses

InputUI
-addButton
-descTextField

+setState()
+getState()
+open()
+close()

UIEventMirror

+onAdd()
+onDescChanged()

FinancialModerator

+onAdd()
+onDescChanged()

FinancialHistory
+description

1

uiDataMirror 1

1

1

uiEvent-
Mirror

1

financialHistory
*

FinancialExpense
+description
+amount
+type

FinancialElm
+description:String
+amount:int
+type:String

FinancialHistory
+description:String

elements

1 *

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 25

Interface Mirror. In this case the User Interface component binds the button-press
events of the buttons to call the corresponding event members in the UIEventMirror
associated through its uiEventMirror association.

5. Implement the Application Moderator

The Application Moderator connects the User Interface Mirror and the Problem
Domain Model. In our example, the FinancialModerator binds the events in the
user interface by implementing the event members in the UIEventMirror interface
and reading and writing to the data members in the UIDataMirror. Generally, the
implementation of the Application Moderator should:

♦ Add methods, which map data between the Problem Domain Model and the
data members in the User Interface Mirror,

♦ Refine the abstract methods of the User Interface Mirror that represent events of
interest,

♦ Implement the general application functionality inside the appropriate event
methods, and

♦ Implement multiple view consistency if needed.

6. Optionally implement the Testing component

An optional Testing component can be implemented by creating another specialisation
of the User Interface Mirror that systematically calls the event members (e.g. in
UIEventMirror) and then tests the state of the data members (e.g. in UIDataMirror).

Consequences: This architectural pattern has both benefits and liabilities.

Benefits:

♦ The User Interface component and the User Interface Mirror components are
independent of the Problem Domain Model component.

♦ The Problem Domain Model component is independent of the User Interface
component.

♦ The architecture supports effective testing. Regression testing of large parts of
the application, e.g., can be done efficiently via a Testing component.

Liabilities:

♦ The interface to the User Interface represented by the User Interface Mirror
component takes some time to develop and maintain.

♦ The architecture results in a minor overhead in terms of function calls and data
conversion.

3.2.4 Applying the Application Moderator pattern

As described earlier, the frequent changes to the user interface throughout the Dragon
project constituted a major architectural uncertainty. Figure 24 shows how the
Application Moderator pattern addresses this by isolating user interface changes. The

Figure 24. Isolating user interface changes in Dragon

Business
Functions

Problem
Domain
Objects

Persistent
Storage

Application
Moderator

User
Interface

User
Interface

Mirror

www.manaraa.com

Tool Support for Software Development

Page 26 Michael Thomsen

Business Function, Problem Domain Objects, and User Interface components are now
no longer communicating directly. Instead, all communication with the user interface
now goes through the User Interface Mirror component. This means that if changes to
the user interface do not require changes to User Interface Mirror, the rest of the
application will not be affected by the changes.

In our case, changes to the user interface often required none or only small changes to
the rest of the application. For example, several versions of a set of allocation user
interfaces resulting from regional differences existed over time using the same User
Interface Mirror. The choice of architecture was helpful: Although the extra interfaces
were somewhat problematic to introduce in the context of rapid development, it more
than paid for the extra work in terms of increased stability.

3.3 Tool integration and software architecture
The previous section presented one concrete architecture from the Dragon Project and
discussed architectural uncertainty in that case. In this section we look at another
concrete architecture – namely the architecture used in the Knight tool to integrate
with existing case tools.

3.3.1 Motivation

A skilled craftsman at work uses a variety of tools, each one tailored to the concrete
work situation, and he effortlessly changes between these with quick alternations.
Software developers, on the other hand, often find themselves constrained to few tools,
as software tools in general do not integrate well. These tools are often closed with
respect to extension, and they often use idiosyncratic file formats and interfaces making
the alternation between tools hard.

Even though software tools do not often integrate well, we believe that one tool will
never be appropriate for every activity in software development. Thus, integration of
tools is important. The Knight tool, as described in section 2.2, is one example of a tool
that complements existing tools for object-oriented modelling. The tool, however, does
not itself offer functionality found in traditional CASE tools such as semantic checks
and code-generation. Also, users of the Knight tool are likely to already be users of a
traditional CASE-tool that they are comfortable with. There is thus a high motivation
for integrating the Knight tool with existing CASE tools.

3.3.2 Types of integration

Integration may be viewed on an architectural level, i.e., as cooperation between high-
level components interacting via high-level connectors. A distinction can be made
between data and processing components, with processing components operating on the
data components. The data in the data components may either be shared by several
processing components or be separate. In either case, the processing components need
to communicate in order to cooperate. If they are running simultaneously, they may do
this by changing the shared data concurrently or by communicating changes to the
replicated data. If they are running asynchronously they typically cooperate by
changing the shared data, or communicating their changes to a shared third party.
Table 1 illustrates this taxonomy for tools working on a common, logical core of data,
and shows some typical applications. The taxonomy is inspired by Ellis et al.'s
taxonomy of Computer Supported Cooperative Work (1991).

Table 1. Tool collaboration taxonomy and typical applications

Time \ Data Shared Separate

Asynchronous Import/export Merging configuration management
systems

Synchronous Components in same
process

Component technology interaction
between applications

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 27

In the Knight project, we have worked with two types of integration:

♦ An asynchronous integration with shared data based on OMG XMI

♦ A synchronous integration with separate data based on Microsoft COM

Each of these types of integrations support different work scenarios. The asynchronous
integration is light-weight, and it supports situations where the data needs to be moved
from one tool to another, and were both tools are not available at the same time. It
does, however, lead to a turn-around time in moving the data from one tool to the
other. The synchronous integration, on the other hand, requires both tools to be
present concurrently, both then support a tight, real-time integration. This is useful in
situations were changes in one tool need to be reflected upon in the other tool
immediately.

This section will present some of our experiences in implementing the asynchronous
support using XMI – for our experiences on the synchronous integration the reader is
referred to (Damm et al., 2000b)

3.3.3 XMI integration

The asynchronous integration in Knight using shared data is based on XML Metadata
Interchange (XMI, 1998, 1999). XMI is an accepted Object Management Group
(OMG, http://www.omg.org) specification that provides the basis for an
interchange format for UML models. The specification is in fact more general, as it
specifies a way of creating an interchange format for any data that can be described by
a metamodel.

Figure 25. Description of a part of a bank

Consider the simple diagram in Figure 25, which describes a part of a bank using a
UML Class diagram. The diagram is a set of data. Since it describes the structure of a
set of concrete account and customer objects, it is also metadata. If a set of metadata
conforms to a specific semantics and syntax, it is called a ‘model’. Since the diagram
actually uses the UML class diagram notation, the diagram is a model. These two
levels of abstraction comprise the two lowest levels in the OMG’s Meta Object Facility
(MOF, 1999). Two higher levels are also present (see Table 2): first, the UML notation
itself can be described. This leads to a so-called metamodel: a set of data that describes
a set of models, one of which is our model of a bank. Second, as there are many other
metamodels than the UML metamodel, the MOF introduces a meta-metamodel level
that can be used to describe all metamodels.

Based on a MOF-compliant metamodel such as the UML metamodel, the XMI
standard describes a way to produce a grammar corresponding to that metamodel. This
grammar can then be used to save and load models (e.g., a model of a bank), resulting
in an interchange format for all models conforming to the metamodel. Figure 26 shows
an extract of the XMI code exported by Knight for the Bank model. For each element
in the model, an XMI element with the same name is present, and inside these
elements follow further elements corresponding to the attributes of the element.

www.manaraa.com

Tool Support for Software Development

Page 28 Michael Thomsen

<Model_Management.Model xmi.id="_1">

<Foundation.Core.ModelElement.name>New diagram</Foundation.Core.ModelElement.name>

<Foundation.Core.Namespace.ownedElement>

<Foundation.Core.Class xmi.id="::53umlClass0">

<Foundation.Core.ModelElement.name>BankAccount</Foundation.Core.ModelElement.name>

<Foundation.Core.Classifier.feature>

<Foundation.Core.Operation xmi.id="::63umlOperation1">

<Foundation.Core.ModelElement.name>Withdraw()</Foundation.Core.ModelElement.name>

...

Figure 26. Part of the bank model encoded in XML conforming to the UML DTD

To specify a grammar, the XMI standard uses XML (eXtensible Markup Language;
XML, 1998) DTD’s (Document Type Definitions) and the actual exchange files are
then XML files conforming to this DTD. In other words, XMI specifies a set of rules
for mapping a MOF compliant metamodel to a DTD, and a way of mapping a model
to an XML file conforming to this DTD. The rules are not described here, as they are
quite elaborate in their full detail. In this context it suffices to say that for each class in
the metamodel, the rules create a grammar rule that can describe both the attributes of
the class and references to elements associated to the class.

 XMI implementation. Based on the UML metamodel standardised by the OMG,
several companies have produced a UML DTD using the rules in the specification. We
use the UML DTD provided as part of the IBM XMI Toolkit (www.alphaworks.ibm.
com/tech/xmitoolkit), as this DTD is based on the relaxed transformation rules
allowing for the exchange of models having elements that are not fully specified.

The basic import and export is quite simple. During the import the XML file is parsed
using the Expat open source XML parser (www.jclark.com/xml/expat.html).
Using the callbacks from the parser, an XML parse tree is built with the XML elements
as nodes and their contents as subnodes. A traversal of this tree then creates the
diagram. Saving is performed analogously: the diagram is traversed and from this an
XML tree is built. This tree is then streamed to a text file.

XMI experiences. Even though the above implementation description sounds simple,
we encountered a number of problems pertaining to the XMI standard. First of all,
since the UML DTD is based directly on the UML metamodel it can only express
what is in the UML metamodel. This is a problem since the UML metamodel is only
concerned with UML models and not UML diagrams that have appearance. While this
issue will most likely be solved in a future version of the UML in which the metamodel
will describe diagrams (Kobryn, 1999), there is currently no standardised way of
encoding presentational information in a UML XMI file.

2 It should be noted that described four-level architecture is only the typical architecture. The number of
levels is not fixed by the specification.

 Meta-level MOF term(s) Examples Sample XMI artifacts

 M3 meta-metamodel The "MOF Model" MOF DTD

 M2 metamodel, or

 meta-metadata

 The UML Metamodel UML DTD, MOF XML
file

 M1 model, or
metadata

 A UML model of a bank UML XML file

 M0 data Concrete bank account
objects and customer
objects

Table 2. OMG MOF metadata architecture2

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 29

XMI allows for extension elements to be added to each element, which can be used to
encode information, that is not part of the metamodel. These extensions are thus well
suited as a place to store the presentational information, and this was the approach that
we chose. However, since the concrete structure of the extensions is not described in
the standard, different tools in practice encode this information in different ways. The
consequence of this is that different tools can only exchange models and not diagrams.
This is a problem, not only for the simple reason that it can be very annoying to have
to re-layout a diagram, but also because positional information in a diagram often has
semantics: two classes positioned close to each other will, e.g., most likely be closer
related than two classes far away from each other.

The extension elements are also problematic for other reasons, especially in
combination with round-trip engineering in which a number of tools import, change
and then re-export the XMI file. While a tool may add any number of extensions to
any element at export, another tool may also ignore their contents at import. However,
the standard does not allow tools to discard extensions made by other tools when re-
exporting a file. A tool must thus make sure that it stores all extensions during import
even though it has no interest in their contents. We solved this in a simple way: at the
import, the XML parse tree built during the parsing is scanned, and each node is then
either used to create a diagram element, or it is stored in a list of ignored nodes. During
the export, new nodes are then created from the current diagram contents and these are
then merged with the nodes that were “ignored”. Once this merged tree has been built
it can be streamed to a file. This technique is also used for UML elements that our tool
has no interest in such as elements from diagram types not supported by the tool.

The following scenario illustrates another complication with extensions in combination
with round-trip engineering: a tool creates a UML element and an extension
containing further information about the element. Another tool then imports this file,
changes the state of the UML element and re-exports the file. This might result in the
extension exported by the first tool being inconsistent with the new state of the UML
element. While this is a general problem in integration, there is no general and simple
solution to it. One possibility would be to add a timestamp attribute to each element.
This would allow a tool to detect that an element, for which it has made an extension,
had been changed since the extension was created.

As a more practical complication, it was difficult to find tools that could validate our
exported XMI files. We are only aware of three tools that support the XMI
specification and work on UML diagrams: the IBM XMI Toolkit, which can convert
XMI files to and from Rational Rose files (http://www.rational.com), Rational
Rose itself with an extra XMI plug-in (http://www.rational.com/products/rose/
support/patches), and the open source CASE tool Argo UML (Robbind et al., 2000;
http://www.argouml.org). The IBM Toolkit and the Rose plug-in produce XMI
files that are compatible, but neither of them is compatible with ArgoUML which uses
an earlier version of the XMI specification. The new XMI 1.1 specification (XMI,
1999) will add another format, and so will future versions of the UML metamodel. If
the XMI standard is to be used extensively as an interchange format, both the XMI
standard and the UML metamodel must become more stable. Otherwise, what was
supposed to be a unifying format will turn into a plethora of formats that tools must
struggle to support.

3.4 Section summary
We described our experience with software architecture and the development process
based on the Dragon project, and introduced the concept of architectural uncertainty.
Also, we described how a concrete architectural uncertainty was handled using the
Application Moderator pattern, and we looked at the concrete software architecture in
the Knight project that was used to integrate tools.

www.manaraa.com

Tool Support for Software Development

Page 30 Michael Thomsen

4. WORK IN PROGRESS AND FUTURE WORK

As the previous sections have outlined, much of my work in the first part of the study is
related to the construction of tools for software developers. In the second part of my
Ph.D. study, I plan to continue my work in this direction, but with a focus on tools that
support cooperation in software development. Cooperation is important at many levels:
teams of developers needs to cooperate in implementing the software, programmers
need to cooperate with other competencies; e.g. participatory designers, and developers
need to cooperate with the end users that are eventually to use the system. (Dewan &
Riedl, 1993) describes a number of concrete situations and some early support.

4.1 CSCW & groupware
Tools that support cooperative work are often called groupware, and the research field
that looks at cooperative work from a computer perspective is often referred to as
CSCW (Computer Supported Cooperative Work). Ellis et al. (1991) define groupware
as:

Computer-based systems that support groups of people engaged in a common task (or
goal) and that provide an interface to a shared environment

They furthermore describe three key areas that must be attended when supporting
group interaction: communication, collaboration, and coordination. Also, they organise
groupware applications using the simple taxonomy illustrated in Figure 27.

Figure 27. Groupware taxonomy

Using these terms and this taxonomy, the next section describes the concrete activities
that I plan to undertake in the second part of the study.

4.2 Goals and activities
My long-term goals for the second part of the study are:

♦ to obtain a general understanding of cooperation in software development,

♦ to understand in what ways this cooperation can be supported by tools,

♦ to experiment with concrete tools, and to evaluate their subsequent use, and

♦ to develop general technologies that allow others to create their own
collaboration tools more easily.

I hope to meet these goals though a number of concrete activities described below.

4.2.1 Mapping object models and user interfaces

My work on the relation between object models and user interfaces also touches upon
cooperation issues, namely cooperation between members of the development team
with different competencies – in this case user interface designers and object-oriented
developers creating their respective artefact. I am still considering implementing tool
support for mapping between these two artefacts.

Same time Different
times

Same
place

Different
places

face-to-face
interaction

asynchronous
interaction

synchronous
distributed
interaction

asynchronous
distributed
interaction

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page 31

4.2.2 Communicative support

I believe that the communicative support currently offered to teams of developers
needs to be improved. The Ph.D. thesis of Henrik B. Christensen (1999) described one
approach where developers could see changes to a shared code base on a number of
so-called software maps. These maps were based on information from a custom
configuration management system also implemented by Christensen. It would be
interesting to have such support in the context of more commonly used configuration
management systems such as Concurrent Versions System (CVS; Berliner, 1990;
http://www.sourcegear.com/CVS). I have recently worked on a number of scripts
that provide basic notifications on changes in a CVS repository. Using these, change
information could be routed to a standardised notification service, e.g. the Elvin
notification server (Fitzpatrick et al., 1999). By subscribing to the events from this
server, clients could visualise the changes in different ways

4.2.3 Shared editing

Group editors – groupware editors that allow users to collaboratively edit a shared
document in same time but different place – constitute an important class of collaboration
tools. Well-known examples include Dolphin (Streitz et al., 1994), which supports
collaborative brainstorming in a hypermedia environment, and GROVE (Ellis et al.,
1988), which supports collaboration in creating document outlines. We believe,
though, that the topic is far from exhausted. Most, if not all, of the work in this area is
relatively old, and given the technological improvements in the last 5-10 years we now
possess new possibilities (and with these new challenges). Secondly, much of the
existing work on shared editing seems to be centred on supporting less well-defined
work practices than e.g. typical activities in software development. Given this I plan to
work on two activities: Support for distributed diagramming and support for shared
coding (see below).

Distributed diagramming in Knight
The Knight tool currently supports same-time, same-place collaboration in creating
object models. However, as developers often are separated geographically, e.g. in
different offices or in different company locations, it would be interesting to extend
Knight to cover same-time, different-place diagram editing. We believe that there are
not only interesting technical issues to investigate, but also many possibilities for
interesting user studies and real work evaluations.

Distributed programming and debugging
Although a number of group text-editors exist, we know of only one application of
group text editing to the task of programming, viz. MDebug (Dewan & Riedl, 1993).
This system was implemented quite a long time ago, so it would be interesting to see
whether it could be refined.

4.2.4 Merging different-time work

In some occasions different-time work is unavoidable, or it is not desirable for several
parties to work on a shared artefact at the same time. This can lead to merging
problems when several developers change the shared artefact in conflicting ways. As
described in section 3.3, I have recently worked with the XMI standard. XMI offers a
standardised way of representing structured data in a XML tree structure, and as tools
for calculating differences between such trees are available (e.g. XML Treediff from
IBM Alphaworks), it would be interesting to see if these could be used to merge XMI
based data. Concretely, I would like to investigate if UML diagrams represented in
XMI format can be gracefully merged using these tools in combination with rule-based
merging (Munson & Dewan, 1994; Asklund, 1994). If this is successful one could
imagine building a generic framework that could merge any XMI describable data.

www.manaraa.com

Tool Support for Software Development

Page 32 Michael Thomsen

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page A-1

APPENDICES

Appendix A. Bibliography

(Asklund, 1994). Asklund, A. Identifying Conflicts During Structural Merge. In
Proceedings of NWPER'94, Lund, Sweden.

(Bass et al., 1998). Bass, L., Clements, P., Kazman, R. Software Architecture in Practice.
Addison Wesley Longman

(Berliner, 1990). Berliner, B. CVS II: parallelizing software development. In Proceedings
of the Winter 1990 USENIX Conference.

(Blaha et al., 1991). Blaha, M., Eddy, F., Lorensen, W., Premerlani, W., Rumbaugh,
J., Object-Oriented modeling and design. Prentice-Hall, New Jersey.

(Brown et al., 1998). Brown, W.J., Malveau, R.C., McCormick III, H.W., Mowbray,
T.J. Anti Patterns. Refactoring Software, Architectures, and Projects in Crisis. Prentice
Hall.

(Buschmann et al., 1996). Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M. Pattern-Oriented Software Architecture: A System of Patterns. Wiley.

(Christensen, 1999). Christensen, H.B. Ragnarok: An Architecture Based Software
Development Environment, Ph.D. thesis, Department of Computer Science,
University of Aarhus, DAIMI PB-540.

(Codd, 1970). Codd, E.F. A relational model for large shared data banks. In
Communications of the ACM 13(6), pp. 377-387.

(Cook & Daniels, 1994). Cook, S., Daniels, J. Designing Object Systems: Object-Oriented
Modeling with Syntropy. Prentice Hall.

(Dahl et al., 1966). Dahl O.-J., Nygaard K. “SIMULA an ALGOL-Based Simulation
Language”, Communications of the ACM, vol. 9, no. 9, September 1966, pp. 671-
678.

(Dewan & Riedl, 1993). Dewan, P., Riedl, J. Toward computer-supported concurrent
software engineering. In IEEE Computer, 26(1), pp. 17-27.

(Ellis et al., 1988). Ellis, C.A., Gibbs, S.J., Rein, G.L. Design and use of a group editor.
In Proceedings of the IFIP TC 2/WG 2.7 Working Conference..

(Ellis et al., 1991). Ellis, C. A., Gibbs, S. J., & Rein, G. L. Groupware: Some Issues
and Experiences. Communications of the ACM, pp. 38-58, 34(1).

(Fitzpatrick et al., 1999). Fitzpartick, G., Mansfield, T., Kaplan, S., Arnold, D., Phelps,
T., Segall, B. Augmenting the Workaday World with Elvin. In Proceedings of
ECSCW’99, Copenhagen, Denmark.

(Fowler, 1997). Fowler M. UML Distilled. Addison-Wesley.

(Gamma et al., 1995). Gamma, E., Helm., R., Johnson, R., Vlissides, J. Design Patterns.
Elements of Reusable Software. Addison-Wesley.

(Greenbaum et al., 1991). Greenbaum J., & Kyng M. Design at Work: Cooperative Design
of Computer Systems, Hillsdale New Jersey: Lawrence Erlbaum Associates.

(Hughes et al., 1994). Hughes J., King V., Rodden T., Andersen H. “Moving Out of
the Control Room: Ethnography in System Design”, Proceedings of CSCW ’94,
Chapel Hill: ACM Press , 1994, pp 429 – 439.

(Jacobson et al., 1999). Jacobson I., Booch G., Rumbaugh J. The Unified Software
Development Process. Addison-Wesley.

www.manaraa.com

Tool Support for Software Development

Page A-2 Michael Thomsen

(Janecek et al., 1999). Janecek, P., Ratzer, A.V., Mackay, W.E. Redesigning
Design/CPN: Integrating Interaction and Petri Nets in Use. Proceedings of the
Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN, 1999, 119-
133.

(Kobryn, 1999). Kobryn, C. UML 2001: A Standardization Odyssey. In
Communications of the ACM, pp. 29-37, 42(10).

(Kurtenbach, 1993). Kurtenbach, G. The Design and Evaluation of Marking Menus. Ph.D.
Thesis, University of Toronto.

(Landay & Meyers, 1995). Landay, J.A., and Myers, B.A. Interactive Sketching for the
Early Stages of User Interface Design. Proceedings of CHI'95, 45-50.

(Lyvtinen & Tahvanainen, 1992). Lyytinen, K., Tahvanainen; V.-P. Next Generation
CASE Tools. IOS Press.

(Madsen et al., 1993). Madsen O. L., Møller-Pedersen B., Nygaard K. Object-Oriented
Programming in the BETA Programming Language, ACM Press, Addison Wesley.

(Madsen, 1996). Madsen O. L. Open Issues in Object-Oriented Programming – a
Scandinavian perspective. Software Practice and Experience, vol. 25, no. S4,
December.

(MOF, 1999). MOF Revision Task Force. Meta Object Facility Specification v. 1.3.
Document ad/99-06-05, Object Management Group.

(Munson & Dewan, 1994). Munson, J.P., Dewan, P. A Flexible Object Merging
Framework. In Proceedings of CSCW’94.

(Mynatt et al., 1999). Mynatt, E.D., Igarashi, T., Edwards, W.K., and LaMarca, A.
Flatland: New Dimensions in Office Whiteboards. Proceedings of CHI'99, 346-353

(Opdyke, 1992). Opdyke, W. Refactoring Object-Oriented Frameworks. Ph.D. Thesis,
University of Illinois at Urbana-Champaign.

(Robbind et al., 2000). Robbins, J.E. & Redmiles, D.F. Cognitive support, UML
adherence, and XMI interchange in Argo/UML. In Information and Software
Technology, 42(2), 79-89, 2000

(Rubine, 1991). Rubine, D. Specifying gestures by example. Proceedings of
SIGGRAPH'91, 329-337.

(Rumbaugh et al., 1999). Jacobson I., Booch G., Rumbaugh J. The Unified Modeling
Language Reference Guide. Addison-Wesley.

(Shaw, 1996). Shaw, M. Some Patterns for Software Architectures. In Pattern Languages
of Program Design 2. Addison-Wesley.

(Streitz et al., 1994). Streitz, N.A.; Geissler, J.; Haake, J.M.; Hol, J. DOLPHIN:
integrated meeting support across local and remote desktop environments and
liveboards. In Proceedings of CSCW’94.

(XMI, 1998). XMI Partners. XML Metadata Interchange (XMI), OMG Document ad/98-
10-05, October 20. Available online at http://www.omg.org/cgi-
bin/doc?ad/98-10-05.

(XMI, 1999). XMI Partners. XML Metadata Interchange (XMI) 1.1 RTF Final Report.
OMG Document ad/99-10-04, October 20. Available online at
http://www.omg.org/cgi-bin/doc?ad/99-10-04.

(XML, 1998). W3C. Extensible Markup Language (XML) 1.0. W3C Recommendation
REC-xml-19980210, 10-Feb-98. Available online at
http://www.w3.org/TR/1998/REC-xml-19980210

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page B-1

Appendix B. Author’s Bibliography

Fully refereed conference papers
(Andersen et al., 2000). Andersen, C.J., Hansen, K.M., Sandvad, E.S., Thomsen, M.,

Tyrsted, M.: Tool Support for Iterative System Development Activities: Issues
and Experiences. To appear in Proceedings of NWPER'2000, The Ninth Nordic
Workshop on Programming and Software Development Environment Research,
Lillehammer/Norway, May 28-30.

(Christensen et al., 1998a). Christensen M., Damm C.H., Hansen K.M., Sandvad E.,
Thomsen M. (1998): Architectures of Prototypes and Architectural Prototyping.
In Mughal, K.A. & Opdahl, A.L. (Eds.) Proceedings of NWPER'98, Bergen,
Norway, June, pp.247-267.

(Christensen et al., 1998b). Christensen M., Crabtree A., Damm C.H., Hansen K.M.,
Madsen O.L., Marqvardsen P., Mogensen P., Sandvad E., Sloth L., Thomsen
M. (1998): The M.A.D. Experience: Multiperspective Application Development
in evolutionary prototyping. In Jul, E.(Ed.) Proceedings of ECOOP'98, Brussels,
Belgium, July, pp. 13-40.

(Christensen et al., 1999a). Christensen M., Damm C.H., Hansen K.M., Sandvad E.,
Thomsen M.: Design and Evolution of Software Architecture in Practice. In
Mingins, C., Meyer, B. (Eds.) Proceedings of TOOLS Pacific 1999, Melbourne,
Australia, November, pp. 2-15.

(Damm et al., 2000a). Damm C.H., Hansen K.M., Thomsen M. (2000): Tool Support
for Cooperative Design: Gesture Based Modeling on an Electronic Whiteboard.
In Turner, T., Szwillus, G., Czerwinski, M., Paterno, F. (Eds.) Proceedings of
CHI'2000, The Hague, The Netherlands, April. New York: ACM Press

(Damm et al., 2000b). Damm, C.H., Hansen, K.M., Thomsen, M., Tyrsted, M. (2000):
CASE Tool Integration: Experiences and Issues in Using XMI and Component
Technology. To appear in Proceedings of TOOLS Europe 2000, Mont St Michel &
St Malo, France, June 5-8.

(Damm et al., 2000c). Damm C.H., Hansen K.M., Thomsen M., Tyrsted M. (2000):
Creative Object-Oriented Modelling: Support for Creativity, Flexibility, and
Collaboration in CASE Tools. To appear in Proceedings of ECOOP'2000, Sophia
Antipolis and Cannes, France, June 12-16.

(Hansen & Thomsen, 1999). Hansen K.M., Thomsen M.: The 'Domain Model
Concealer' and 'Application Moderator' Patterns: Addressing Architectural
Uncertainty in Interactive Systems. In Chen, J., Li, J., Meyer, B. (Eds.)
Proceedings of TOOLS Asia 1999, Nanjing, China, September, pp. 177-190.

Position Papers
(Thomsen, 1999). Thomsen M.: Domain Object Models and User-interfaces. Presented

at Workshop on Interactive System Design and Object Models at ECOOP'99, Lisbon,
Portugal.

(Christensen et al., 1999b). Christensen M., Damm C.H., Hansen C.M., Sandvad E.,
Thomsen M.: Software Architectural Evolution in the Dragon Project.
Presented at Workshop on Object-Oriented Architectural Evolution at ECOOP'99,
Lisbon, Portugal.

www.manaraa.com

Tool Support for Software Development

Page B-2 Michael Thomsen

Technical reports
(Thomsen, 1998a). Thomsen M.: Persistent Storage of OO-models in Relational Databases.

COT report, Centre for IT research, document number COT/4-02-V1.5, 1998.

(Thomsen, 1998b). Thomsen M.: Implementation of Rdbmap − a framework for object-
relational mapping layers.

In preparation
(Damm et al., In Prep.). Damm C.H., Hansen K.M., Thomsen M., Tyrsted M.: On the

UML's Support for Modelling Practice. Submitted to <<UML’2000>>

www.manaraa.com

 Tool Support for Software Development

Michael Thomsen Page C-1

Appendix C. Study and teaching activities during
Del-A

Courses taken

Course Type Points Semester

Aspects of Object-Oriented
Programming (Bd.2)

B-course 2 points Fall, 1998

Design Patterns and Frameworks C-course 2 points Fall, 1998

Cooperative Design in New Contexts C-course 1 points Fall, 1998

Post-WIMP Interaction C-course 2 points Spring, 1999

Cryptology (Bd.7) B-course 2 points Fall, 1999

Scientific Computing (Bd.5) B-course 2 points Spring, 2000

Advanced Interaction Techniques C-course 2 points Spring, 2000

Teaching

Course Type Semester

Computer Architecture (dArk) Teaching assistant Fall, 1998

Human-Computer Interaction (HCI) Teaching assistant Spring, 1999

Aspects of Object-Oriented
Programming (AOOP)

Lecturer Fall, 1999

Human-Computer Interaction (HCI) Teaching assistant Spring, 2000

